Grants Search Results
Need help? Call us at (888) 899-2253
Interested in applying for a St. Baldrick's Foundation grant? Learn more about the grant application process.
Showing 61-80 of 271 results
University of Vermont and State Agricultural College Summer Fellow
Funded: 05-01-2020
through 04-30-2021
Funding Type: St. Baldrick's Summer Fellow
Institution Location:
Burlington, VT
Institution: University of Vermont and State Agricultural College
affiliated with Vermont Children’s Hospital at the UVM Medical Center
This grant funds an undergraduate student to complete work in pediatric oncology research for the summer. Diffuse intrinsic pontine glioma (DIPG) is a type of children's brain tumor that currently has no cure or effective therapeutic options. This proposal aims to understand whether the target drug of ONC201, ClpP, can be targeted using novel compounds representing new potential therapeutics in DIPG.
The University of Tennessee Summer Fellow
Funded: 05-01-2020
through 09-30-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location:
Memphis, TN
Institution: University of Tennessee Health Science Center
This grant funds a medical student to complete work in pediatric oncology research for the summer. This year it is estimated that 800 children will be diagnosed with osteosarcoma (bone cancer). The lab has identified a gene (WNT5B) that is too high in a subset of osteosarcomas. By making a cell line that removes WNT5B, the lab will compare its growth to the original cells and target this gene in those cancers that have it to design a specific targeted therapy.
Children's Hospital, Los Angeles Summer Fellow
Funded: 05-01-2020
through 10-31-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location:
Los Angeles, CA
Institution: Children's Hospital Los Angeles
This grant funds two students to complete work in pediatric oncology research for the summer. The experience may encourage them to choose childhood cancer research as a specialty. Project 1: Neuroblastomas are an enigmatic cancer of childhood with subtypes that have extremely good or poor survival. Poor prognosis neuroblastomas contain normal immune cells that help tumors grow. Important questions are 1) what is the repertoire of immune cells in neuroblastomas at time of diagnosis, 2) how the interplay between normal and tumor cells changes when tumors recur. The Summer Fellow will analyze images of tumors at recurrence and compare to the diagnosis images. These findings will provide insights into the types of immune cells that cancer cells rely on and may allow identification of new targets of therapy. Project 2: Decline in brain function may happen after irradiation to the brain in children. It is hard to predict the extent and speed by which it happens. There is suggestion that more rapid injury happens in areas with iron deposition. Using a novel MRI method that allows chemical identification and quantification of iron in the brain, the Summer Fellow will characterize the imaging changes in white matter of the brain in children who have been treated with radiation for their brain tumors. This will allow to then correlate the changes with future outcome of their cognitive function.
Poul Sorensen M.D.
Funded: 01-01-2020
through 12-31-2023
Funding Type: Research Grant
Institution Location:
Vancouver, BC
Institution: The University of British Columbia
affiliated with British Columbia Children's Hospital, British Columbia Cancer Agency
Ewing Sarcoma (EwS) is an aggressive bone and soft tissue tumor occurring in children and young adults. Approximately 25-30% of patients already have metastases at diagnosis and in spite of aggressive treatment, the survival for patients with metastatic disease remains dismal. EwS is considered an immune cold tumor that is largely resistant to conventional immunotherapy. Alternative treatment approaches are sorely needed, particularly in patients with metastatic disease. Dr. Sorensen and colleagues are using three novel strategies for targeting EwS tumors: 1) Inhibiting an EwS specific fusion protein that drives EwS tumor development. 2) Targeting a surface protein called IL1RAP. 3) Recruiting natural killer (NK) immune cells to EwS tumors and priming them to attack the tumor. This grant is the result of a generous anonymous donation to fund Ewing sarcoma research, specifically. It is in honor of a teenager fighting Ewing sarcoma, and is named the St. Baldrick's - Martha's Better Ewing Sarcoma Treatment (BEST) Grant for All.
Iannis Aifantis Ph.D.
Funded: 10-01-2019
through 09-30-2020
Funding Type: Research Grant
Institution Location:
New York, NY
Institution: New York University School of Medicine
affiliated with NYU Langone Medical Center
Acute lymphoblastic leukemia (ALL) remains the most common cancer of children and young adults. Despite intensified treatments that achieved cure rates around 85%, there is a number of children who will relapse and succumb to therapy-resistant disease. One of the revolutions in the treatment of human cancer the last decade was immunotherapy, the ability of our own immune system to fight cancer. Unfortunately, despite its successes in a number of solid tumours, immunotherapy has not really impacted the treatment of leukemia, with the exception of CAR-T cell treatment of pediatric B-ALL. Indeed, some frequent types of pediatric ALL, and specifically T cell ALL (T-ALL) and its subtypes, have no immunotherapy treatment options. We believe that this is because we still don't understand how the cells of the immune system interact with the leukemia. Actually, researchers don't even know what type of immune cells are there available to fight the disease. Dr. Aifantis is applying a number of single cell techniques to create a map of the immune cells in the bone marrow of children with T-ALL. He is doing this at diagnosis of the disease, after treatment (remission) and when the children relapse. These studies will offer the first map of the immune system in pediatric ALL and will enable researchers to propose ways to activate the immune system to fight the tumour.
Ramon Sun Ph.D.
Funded: 08-01-2019
through 07-31-2022
Funding Type: St. Baldrick's Scholar
Institution Location:
Lexington, KY
Institution: University of Kentucky Research Foundation
affiliated with Kentucky Children's Hospital
In the new era of personalized medicine, Ewing sarcoma still relies on decades-old chemotherapy options, where aggressive treatments are met with poor disease outcomes. Ewing sarcoma is a devastating disease that affects children and young adults age 5-16. Based on treatment outcome and patient qualities of life, Ewing sarcoma is in desperate need of research and development of new therapeutic options. One of the key observations of Ewing sarcoma made back in the 1930s is the accumulation of a large amount of glycogen. Glycogen is a sugar molecule that our body uses to store energy; only specific organs such as the liver and muscle are capable of producing glycogen. The ability of Ewing sarcoma tumors to store large amount of glycogen has been forgotten until now. Dr. Sun aims to understand the reason behind large glycogen accumulation in Ewing sarcoma and exploit the glycogen deposits as a possible drug target for the treatment of Ewing sarcoma. The successful completion of this project will bring new hope to this century-old disease and facilitate the development of the next generation of novel therapeutics specifically for Ewing sarcoma.
A portion of this grant is funded by and named for Julia's Legacy of Hope, a St. Baldrick's Hero Fund that honors her positive and courageous spirit and carries out Julia's last wish: "no child should have to go through what I have experienced". Diagnosed at age 16 with Ewing sarcoma, Julia fought cancer and survived only to be stricken in college with acute myeloid leukemia, a secondary cancer as a result of treatment. Through this Hero Fund, her family hopes to raise awareness and funds for childhood cancer research especially for Adolescent and Young Adult (AYA) patients.
Eugenie Kleinerman M.D.
Funded: 07-01-2019
through 12-31-2020
Funding Type: Research Grant
Institution Location:
Houston, TX
Institution: University of Texas M.D. Anderson Cancer Center
Altering chemotherapy, including dose intensification, has not improved the survival for osteosarcoma (OS) patients. Genomic analysis has been unsuccessful in identifying consistent targetable options, and there were no responses in relapsed/refractory OS patients treated in numerous Phase I or II trials. Identifying new therapies is imperative. Immunotherapies such as dendritic cell vaccines (DCV) and checkpoint inhibitors have shown activity against adult cancers but there are no studies in children or adolescents (AYA) with OS. Dr. Kleinerman and colleagues demonstrated the efficacy of checkpoint inhibitor therapy against OS lung metastases. They have also showed that the activity of DCV can be improved by checkpoint inhibition. They are investigating whether a unique dendritic cell vaccine that augments T-cells is effective against primary and metastatic OS. This project aims to identify new therapeutic approaches for treating children and AYAs with relapsed/metastatic and primary OS. If efficacy is demonstrated, this approach can be translated into a clinical trial for children with OS lung metastases. Another goal is to combine vaccine therapy with chemotherapy for newly diagnosed patients to improve disease-free survival.
Lisa Force M.D.
Funded: 07-01-2019
through 12-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location:
Memphis, TN
Institution: St. Jude Children's Research Hospital
Children and adolescents everywhere in the world get cancer and both the type of cancer, and perhaps more importantly, where they live in the world, factor into whether they live or die. This is due to major disparities between countries in access to optimal treatment, early abandonment of therapy despite the potential for cure, and availability of quality supportive care. Acute lymphoblastic leukemia (ALL), the most common childhood cancer, is mostly curable in countries with strong health systems, like the United States. However, we do not know the exact number of children and adolescents who develop and die from ALL worldwide, because many countries with limited resources also lack quality health registration systems. Identification of context-appropriate strategies to prevent future deaths in children with ALL are necessary, and when combined with improved burden estimates, can guide policy decisions more effectively. Knowing that the majority of countries in the world have limited resources, this project will determine what the best interventions are to improve outcomes for children and adolescents with ALL now, while testing ways to improve estimates of the number of children with ALL who are currently not correctly diagnosed or do not reach healthcare. Awarded at St. Jude Children's Research Hospital and transferred to University of Washington.
Lara Davis M.D.
Funded: 07-01-2019
through 06-30-2022
Funding Type: St. Baldrick's Scholar
Institution Location:
Portland, OR
Institution: Oregon Health and Science University
affiliated with Doernbecher Children's Hospital
Osteosarcoma is a cancer of bone that happens in young people. Dr. Davis and colleagues are trying to find ways to help the immune system fight off tumor cells, which may help us find a cure. They are examining all of the different type of immune cells in over 100 osteosarcoma tumor samples to identify how patterns in the cells match with other characteristics, such as how well a patient does with standard osteosarcoma treatment. They are also looking at biopsies from patients before and after immune therapy and will try to boost responses to immune therapy with a targeted drug. By understanding the way the immune system "sees" (or doesn't see) osteosarcoma, they will be able to predict which patients will benefit from different types of immune therapy and who will need other drugs added to their treatment regimen.
A portion of this grant is generously supported by the Sweet Caroline Fund, a St. Baldrick's Hero Fund, created to honor the memory of Caroline Richards who was diagnosed in 2014 with osteosarcoma in her right arm when she was 11 years old. She persevered through rigorous treatments with a giving spirit and a contagious smile, always thinking of how to make others happy or laugh. Caroline sadly lost her battle a year later but this fund pays tribute to her compassion for others by supporting osteosarcoma research to help kids with cancer.
Diana Moke M.D.
Funded: 07-01-2019
through 12-31-2021
Funding Type: St. Baldrick's Scholar
Institution Location:
Los Angeles, CA
Institution: Children's Hospital Los Angeles
Survivors of cancer have a higher risk of health problems because of the severity of the chemotherapy and radiation treatments they received. As survivors of childhood cancer age, they increasingly succumb to the "late effects" of their cancer treatment (such as second cancers and heart and lung disease). After 10-15 years, these late effects become the leading causes of death in this population. Adolescents and young adults (AYAs, aged 15-39) are a subgroup of cancer patients that are defined as high risk because they: more commonly suffer from toxicities and side effects of their cancer treatment; have unique barriers to accessing health care; and suffer specific psychosocial concerns because of their life stage transitioning into adulthood. To date, little research has been done on the factors that influence long-term health outcomes in the population of survivors of AYA cancer. Dr. Moke is working to explore how cancer and its treatments affect health later on in life in survivors of AYA cancer, identify the causes of death in this population, and determine what factors and cancer treatments are associated with these specific life threatening health problems. This study will provide the baseline data needed to design ways to decrease the severity of and death from these late effects, and thus be an important step in promoting long and healthy lives in survivors of AYA cancer.
David Libich Ph.D.
Funded: 07-01-2019
through 06-30-2023
Funding Type: St. Baldrick's Scholar
Institution Location:
San Antonio, TX
Institution: University of Texas Health Science Center at San Antonio
Ewing sarcoma is an aggressive bone and soft tissue cancer that primarily affects children and adolescents. Patients often suffer severe side-effects from treatment and there are no second-line therapies for relapsed tumors. It is critical that we develop new and less toxic treatments for this cancer. Ewing Sarcoma is caused by a rearrangement of DNA that fuses pieces of two different proteins together to form a new protein. This new protein, called EWS-FLI1, can turn on genes that should not be on, leading to the transformation of the cell into an Ewing Sarcoma tumor. This fusion protein has features that make it very difficult to study, it sticks to itself and does not have a structure, a good analogy is that it behaves like a piece of cooked spaghetti. As the Shohet Family Fund for Ewing Sarcoma Research St. Baldrick's Scholar, Dr. Libich is utilizing his background in working with similar proteins that do not have structure. He is using NMR (nuclear magnetic resonance) which works just like MRI, to peer into the protein to understand exactly how it functions. This information is critical for designing molecules (drugs) that will be able to only affect the function of EWS-FLI1 and thus open new ways of attacking Ewing's sarcoma.
This grant is funded by and named for the Shohet Family Fund for Ewing Sarcoma Research. In his freshman year of college, Noah was diagnosed with Ewing sarcoma. He endured many months of chemotherapy and had limb salvage surgery. Able to return to school, Noah had no evidence of disease for 2½ years until April 2018 when routine scans revealed he had relapsed. He passed away in May 2021 at the age of 25. Noah and his family were always passionate about the need for curative treatments for diseases of the AYA population. The Shohet family intends to raise funds for this Hero Fund in Noah's memory to find cures for Ewing sarcoma and to carry on his legacy of possibilities and hope.
Wendy Bottinor M.D.
Funded: 07-01-2019
through 06-30-2023
Funding Type: St. Baldrick's Scholar
Institution Location:
Richmond, VA
Institution: Virginia Commonwealth University
affiliated with Children's Hospital of Richmond at VCU
Surviving cancer is an achievement of immeasurable magnitude, however for most survivors this achievement does not signify the end of cancer related health issues. The cardiovascular system is commonly affected by cancer treatment and cardiovascular disease is the second leading cause of death in childhood cancer survivors. As the To-morrow's Research Fund St. Baldrick's Scholar, Dr. Bottinor is helping childhood cancer survivors live healthier lives by using advanced cardiac imaging techniques to identify survivors with subclinical cardiovascular dysfunction before they develop overt heart disease. She plans to use echocardiographic imaging to detect cardiovascular disease at its earliest stages, when treatment is most likely to be efficacious.
Dr. Bottinor is analyzing cardiac screening studies collected in routine care to determine if subclinical abnormalities can predict which survivors are at risk for subsequent cardiovascular disease and therefore the most likely to benefit from early medical intervention. She believes these techniques will be helpful in childhood cancer survivors because previous work in adult patients has suggested that advanced cardiac imaging techniques can predict which patients with cancer on active treatment are at higher risk for developing subsequent cardiovascular disease.
This grant is named for To-morrow's Research Fund, a Hero Fund created to honor Becky Morrow who is a childhood cancer survivor. Becky was diagnosed with acute lyphoblastic leukemia when she was 12 and endured grueling treatments and its side effects. Today she is cancer free, a wife and a mom but suffers late effects. This fund supports survivorship research for safer treatments that help kids not only survive but thrive.
Awarded at Vanderbilt University and transferred to Virginia Commonwealth University.
Yangming Ou Ph.D.
Funded: 07-01-2019
through 06-30-2025
Funding Type: St. Baldrick's Scholar
Institution Location:
Boston, MA
Institution: Boston Children's Hospital
affiliated with Dana-Farber Cancer Institute, Harvard Medical School
Based on progress to date, Dr. Ou was awarded a new grant in 2022 and 2023 to fund an additional year of this Scholar grant. Due to the tumor and treatment damaging the developing brain, 60-80% of pediatric brain tumor survivors experience long-term neurocognitive impairment. There are two possible paths to improve outcomes: intervene the adverse brain development after treatment, or further optimize radiotherapy dose distribution in the brain before treatment. For the former, the question is to find at-risk patients to intervene after treatment. For the latter, the question is to find target brain regions, where changing radiation doses can potentially change outcomes. Both questions have been studied on the population-level, not on the individual level. This project aims to push our knowledge in these two fronts to the individual level. Dr. Ou is using data from 3 just finished clinical trials to find target patients and find target brain regions for radiation dose optimization. Compared to studies that consider one risk factor a time, Dr. Ou will consider a comprehensive set of risk factors to improve precision to the individual level. The results will allow him to design future larger-scale, multi-site retrospective replicative and eventually prospective clinical trials, to improve neurocognitive outcomes in this vulnerable population before and after treatment.
This grant is generously supported by the Grace for Good Fund, established in honor of Grace Carey and celebrates her survivorship from medulloblastoma. Her cancer journey began in 2007 when she was diagnosed at age 5 with a treatment regime that entailed surgery, proton beam therapy and chemotherapy. While Grace handled it all with minor setbacks, she now faces the physical, emotional and cognitive challenges wrought by the very medications and procedures that saved her life. This fund was inspired by Grace’s desire to help other kids with cancer and supports research of brain tumors and the multitude of challenges facing survivors post treatment.
Roland Walter M.D., Ph.D., M.S.
Funded: 07-01-2019
through 12-31-2021
Funding Type: Research Grant
Institution Location:
Seattle, WA
Institution: Fred Hutchinson Cancer Research Center
affiliated with University of Washington, Seattle Children's Hospital
Pediatric acute leukemias are aggressive blood cancers that result in many childhood cancer deaths despite intensive treatments. Because these leukemias are highly sensitive to radiation, researchers have developed a technology called radioimmunotherapy. Radioimmunotherapy uses antibodies to deliver a radiation payload directly to cancer cells. Most existing radioimmunotherapies are directed against two cell surface proteins called CD33 or CD45. However, because these proteins are also found on many normal blood cells, the amount of radioimmunotherapy that can be safely given via CD33 or CD45 antibodies is limited.
As the recipient of the Emily Beazley's Kures for Kids Fund St. Baldrick's Research Grant, Dr. Walter is developing and rigorously testing a new form of radioimmunotherapy that is directed against CD123. CD123 is found on only a few normal blood cells but is heavily expressed on leukemia cells in most children with acute leukemia. Moreover, CD123 is particularly attractive as a target as it is widely overexpressed on underlying leukemic stem cells (the rare cells that have the ability to generate and fuel these cancers), whereas normal blood stem cells express little or no CD123. These studies are the first to test the value of CD123-targeting radioimmunotherapy and will guide researchers towards bringing this new, less toxic treatment to pediatric patients. At the age of 8, Emily was diagnosed with Stage III T-cell lymphoblastic non-Hodgkin’s lymphoma. Her cancer was extremely aggressive, and she bravely battled it through three relapses. Her family prayed for a miracle but discovered Emily herself was the miracle. She inspired a community to come together to show love and changed lives with her message: “You gotta stay strong, you gotta stay positive, no matter what happens.” Emily passed away in 2015 at age of 12. She often talked about her dream of starting a foundation that funded research. She named it “Kures for Kids”. Her family and friends carry on her dream and her mission with this Hero Fund.
Anao Zhang Ph.D.
Funded: 07-01-2019
through 06-30-2021
Funding Type: Supportive Care Research Grant
Institution Location:
Ann Arbor, MI
Institution: University of Michigan
affiliated with C.S. Mott Children’s Hospital
Adolescent and young adult (AYA) cancer patients face depression and anxiety that are unique to their cancer diagnoses. Existing psychotherapies that work well for general depression and anxiety do not work effectively for the AYA population. Untreated psychological stress and distress (like depression or anxiety) will result in young patients' non-compliance to medical treatment, low quality of life among others. These psychological challenges stand in the way between these patients and a successful recovery. Therefore, as the recipient of the Julia's Legacy of Hope St. Baldrick’s Supportive Care Research Grant, Dr. Zhang is developing and evaluating a computer-based cognitive behavioral therapy that is specifically tailored for AYA cancer patients. Results of this study will improve the treatment for AYA cancer patients' depression and anxiety to improve their medical compliance and quality of life.
This grant is funded by and named for Julia's Legacy of Hope, a Hero Fund that honors her positive, courageous spirit and carries out her last wish: "no child should have to go through what I have experienced". Diagnosed at 16 with Ewing sarcoma, Julia fought cancer and survived only to be stricken by a secondary cancer as a result of treatment. Her family hopes to raise awareness and funds for research especially for Adolescent and Young Adult (AYA) patients.
Raman Bahal Ph.D.
Funded: 07-01-2019
through 06-30-2020
Funding Type: Research Grant
Institution Location:
Storrs, CT
Institution: University of Connecticut
Cancer associated with different types of lymphocytes is known as lymphoma. Different forms of lymphoma are a common cause of pediatric cancer in the US. Current clinical therapy is based on conventional chemo- and radiation therapy, which is associated with numerous side effects.
As the recipient of the Jack's Pack - We Still Have His Back St. Baldrick's Research Grant, Dr. Bahal is researching an alternative robust therapy against lymphoma by exploring new chemically modified therapeutic molecules and their interaction with novel targets. One of the major challenges associated with current therapies are side effects due to non-targeted delivery of the drug to the normal bystander cells that can result in potential toxicity. Dr. Bahal is using a nanotechnology based approach for targeted delivery. He aims to accomplish two specific goals: a) To optimize the design and synthesis of a new class of bioactive molecules to target pediatric lymphoma; and b) To test the therapeutic effect of synthesized molecules in disease-related models. Investigation of these novel methods will lead to the development of novel drug candidate for pediatric lymphoma. Jack Klein was a 10 year old who loved life, laughing and monkeys. During his illness, his community of family and friends near and far rallied around him under the moniker "Jack's Pack". Their slogan was "We have Jack's Back". After Jack succumbed to Burkitt's Lymphoma, his "pack" focused their energy and efforts to funding a cure...just as Jack would have wanted.
Christopher French M.D.
Funded: 07-01-2019
through 09-30-2020
Funding Type: Research Grant
Institution Location:
Boston, MA
Institution: Brigham and Women's Hospital, Inc.
Dr. French is studying one of the most deadly childhood and adolescent cancers known, called NUT midline carcinoma. There is no effective treatment for this cancer, which has a median survival of 6.7 months. Recently, his team discovered a new class of drug, called 'NEO', that in preliminary studies appears promising in models, an unprecedented finding that gives some hope that they may have stumbled across a new effective treatment for this disease. Based on some recent studies, Dr. French thinks that the drug class directly acts against the cancer protein that drives NUT midline carcinoma, called BRD4-NUT. BRD4-NUT is created by a mutation that fuses one gene, BRD4, to another, NUT, which alone don't cause cancer, but when fused together create a very potent cancer protein. He think the drug inhibits both the BRD4 and NUT halves of this fusion in a manner that gives the drug some selectivity for BRD4-NUT. The findings are exciting because the NEO drugs are set for clinical trials to begin in 2019. Dr. French and colleagues are working to 1) validate the findings that the NEO drugs work well in models bearing NUT midline carcinoma to provide rationale to enroll NUT midline carcinoma patients onto these trials, and 2) determine scientifically how the NEO drugs inhibit NUT midline carcinoma growth.
Beshay Zordoky Ph.D.
Funded: 07-01-2019
through 09-30-2020
Funding Type: Research Grant
Institution Location:
Minneapolis, MN
Institution: University of Minnesota - Twin Cities
affiliated with Masonic Children's Hospital
Thanks to advanced diagnosis and treatment, many children now can be treated from cancer and stay alive for a long time; they are called survivors. Some anticancer drugs are harmful to the heart and may cause heart failure in these survivors. High blood pressure increases the risk of heart failure in survivors, but no one knows how this happens. Dr. Zordoky has developed a new model to answer this question. He thinks that anticancer drugs make the hearts age faster leading to a worse response to increased blood pressure. He is looking at a natural compound and a new group of drugs which prevent aging to see if they will protect the hearts from the bad effects of anticancer drugs and make the hearts stronger when hit by high blood pressure. The findings of this research will open the door for testing these compounds in the clinic in order to prevent late side effects of anticancer drugs in survivors.
University of Utah Summer Fellow
Funded: 06-01-2019
through 05-31-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location:
Salt Lake City, UT
Institution: University of Utah
affiliated with Huntsman Cancer Institute
This grant funds a graduate student to complete work in pediatric oncology research for the summer. The experience may encourage them to choose childhood cancer research as a specialty. HPV vaccination is an important but underutilized tool to ensure the long-term health of childhood and adolescent cancer survivors. Survivors of childhood and adolescent cancers are at higher risk for HPV-related health risks, including HPV-related cancers, than the general population. Unfortunately, their rate of HPV vaccination is much lower than the general population. This study will explore communication strategies related to the HPV vaccine among survivors being seen for follow-up care in an oncology setting. Interviews will be conducted with survivors (ages 18-26) as well as parents of survivors to understand their concerns about and barriers to HPV vaccination and to create specific communication strategies for oncology providers to discuss the HPV vaccine with survivors.
Indiana University Summer Fellow
Funded: 05-20-2019
through 08-02-2019
Funding Type: St. Baldrick's Summer Fellow
Institution Location:
Indianapolis, IN
Institution: Indiana University
affiliated with Riley Hospital for Children, IU Health Proton Therapy Center
This grant funds an undergraduate student to complete work in pediatric oncology research for the summer. The experience may encourage them to choose childhood cancer research as a specialty. More than 80% of children with cancer before the age of 20 years will survive beyond 5 years from diagnosis. The exposure to chemotherapy causes both short-term as well as long-term health issues in these individuals. Exercise interventions in adults with cancer demonstrate significant benefits in health, however, there are no studies examining the effects in pediatric, adolescent and young adult cancer survivors. This study will determine if a one-on-one supervised exercise program or exercise intervention personalized for adolescent and young adult (AYA) cancer survivors (15 and 29 years age) will significantly improve chemotherapy-induced health issues.