Grants Search Results

Need help? Call us at (888) 899-2253

Interested in applying for a St. Baldrick's Foundation grant? Learn more about the grant application process.

Showing 161-180 of 767 results

Jovana Pavisic M.D.

Researcher Photo

Funded: 07-01-2019 through 09-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location: New York, NY
Institution: Columbia University Medical Center affiliated with Morgan Stanley Children’s Hospital, New York-Presbyterian

Osteosarcoma (OS) is the most common malignant bone tumor in children, but only five chemotherapy drugs have been shown to be beneficial, and overall survival remains poor (60%). There are no effective standard-of-care therapies for patients who relapse. Identifying new treatment strategies in OS is of paramount importance. Prior studies evaluating the genetic code of OS tumors show significant genetic heterogeneity among patients and have not uncovered recurrent changes that can be successfully targeted. Dr. Pavisic is using computational algorithms established by the Califano laboratory to identify universal tumor dependencies known as master regulator (MR) proteins from the messages expressed by the tumor’s genetic code to make proteins (RNA). Using information from drug studies done in OS cells, she is prioritizing drugs by their ability to reverse the activity of a tumor’s most aberrantly active MR proteins. MR proteins integrate the effects of many genetic alterations and are critical to tumor cell survival, thus represent novel tumor biomarkers and drug targets. Dr. Pavisic hypothesizes that MR analysis in OS will lead to biologically-relevant patient classification and risk stratification, and prioritize new drugs for immediate testing in laboratory models of OS and in clinical trials to improve outcomes for children with OS.

Nathan Dahl M.D.

Researcher Photo

Funded: 07-01-2019 through 06-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location: Aurora, CO
Institution: Children's Hospital Colorado affiliated with University of Colorado

Diffuse midline gliomas (DMGs) are aggressive brain tumors in children that are almost uniformly fatal. Curative surgery is not possible, radiation therapy provides only temporary relief, and chemotherapies have proven wholly ineffective. New, effective therapies are desperately needed for children with these tumors, but decades of clinical trials have so far failed to improve outcomes. Researchers have now identified a specific mutation (H3K27M) that affects how DNA is organized and drives a majority of DMG tumors. This insight has yet to result in new treatment options, however, an emerging understanding suggests that other cellular changes are required for tumors to grow. As the Kids Shouldn't Have Cancer Foundation St. Baldrick's Fellow, Dr. Dahl and colleagues have identified a protein complex called the SEC that DMGs with the H3K27M mutation are dependent on for survival. This complex regulates how DMG cells read their genetic code. An existing class of drugs called CDK9 inhibitors are effective in blocking the activity of the SEC. Dr. Dahl is researching how the SEC acts to promote DMG cell growth and testing whether CDK9 inhibitors can be used to interrupt this process. If successful, this research will provide the rationale for the design of future clinical trials using CDK9 inhibition as a new way of treating this intractable disease. The Kids Shouldn’t Have Cancer Foundation, a St. Baldrick's partner, was founded after Jon and Kimberly Wade lost their son, Jonny and twin to brother, Jacky to medulloblastoma. He endured countless surgeries and procedures, pain and fatigue yet maintained unshakable faith and grace through it all. As a result, he told his mother, “I don’t want any other kid to have cancer.” Their mission is to honor Jonny’s wish by conquering pediatric brain cancer through research and political action with an emphasis on responsible spending.

Alyssa Kennedy M.D., Ph.D.

Funded: 07-01-2019 through 06-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location: Boston, MA
Institution: Dana-Farber Cancer Institute affiliated with Boston Children's Hospital, Harvard Medical School

More frequently than previously recognized, children with leukemia have inherited mutations that make them likely to develop these cancers. These inherited syndromes are called leukemia predisposition syndromes and manifest with abnormalities in the bone marrow or leukemia. Recent studies have shown that these syndromes may account for over 10% of pediatric and young adult leukemia and the mutations in these patients may differ from adults with similar disease. Once leukemia develops in such patients, survival rates are drastically reduced, so many patients undergo painful and stressful annual bone marrow exams to monitor for leukemia. Major barriers to improving outcomes for these patients include: lack of markers for risk stratification, limited understanding of why these mutations lead to cancer and lack of understanding of why these patients have leukemia that is harder to treat. To better understand how disease-causing mutations arise in pediatric patients, Dr. Kennedy is analyzing genetic sequences from patients with a predisposition syndrome. These studies may be able to be performed on peripheral blood, sparing children bone marrow biopsies. Ultimately, she hopes that these studies will identify novel ways to monitor and treat pediatric and young adult patients at high risk for leukemia.

Rebecca Richards M.D., Ph.D.

Researcher Photo

Funded: 07-01-2019 through 06-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location: Palo Alto, CA
Institution: Stanford University affiliated with Lucile Packard Children’s Hospital

There is a great need for new therapies for pediatric acute myeloid leukemia (AML), both to improve cure rates and to decrease toxicities of the current standard of care, which includes intense chemotherapy and often bone marrow transplant. Chimeric antigen receptor (CAR) T cells represent one such opportunity to improve care for these patients, especially given the success of CAR T cells in patients with other types of leukemia and lymphoma. Dr. Richards and colleagues have identified a protein called CD93 as a potential target on AML cells, and have generated CAR T cells that are specific for this target. Preliminary data show that these cells meet criteria for an effective CAR and show promise for potential translation to patients in the future. Dr. Richards is focusing on extending the initial testing of these CAR T cells to determine efficacy in treating leukemia in pre-clinical models and evaluating for possible toxicities as we consider the possibility of moving this therapy toward clinical trials in the future.

Micah Maxwell M.D., Ph.D.

Funded: 07-01-2019 through 09-09-2021
Funding Type: St. Baldrick's Fellow
Institution Location: Baltimore, MD
Institution: Johns Hopkins University School of Medicine affiliated with Johns Hopkins Children's Center

Neuroblastoma is a common solid tumor in children, accounting for 1 in 10 new cancer diagnoses. Approximately half of the children with the high-risk form of the disease will die, and the survivors will bear a lifelong burden from the intensity of therapy. We are desperately in need of novel treatment approaches. The most aggressive neuroblastomas have extra copies of a gene called MYCN, which causes neuroblastoma cells to have different metabolism from normal cells. As the Mighty Micah's Mission Fund St. Baldrick's Fellow, Dr. Maxwell is investigating the abnormal metabolism of neuroblastoma in order to uncover new potential therapies. He has found that the amino acid, asparagine, is critical to the growth and survival of neuroblastoma, and has identified two medications (called DON and asparaginase) that, when combined, reduce the levels of this critical nutrient and effectively kill the most aggressive neuroblastomas. This work could serve as the basis for new clinical trials with this drug combination in children with neuroblastoma. Dr. Maxwell aims to exploit neuroblastoma’s metabolic Achilles’ heel in order to improve outcomes for children who suffer from this devastating disease. This approach holds great promise for future targeted therapies to treat not only neuroblastoma, but many other cancers that rely on abnormal metabolism. This grant is named for Mighty Micah's Mission Fund, a St. Baldrick's Hero Fund. Diagnosed when he was 15 months old with high risk neuroblastoma, Micah was in treatment for nearly 7 years and survived two relapses. Thanks to research supported by St. Baldrick’s and the development of a new drug that is less toxic and more effective, Micah has no evidence of disease today. He has been named a 2020 Ambassador for St. Baldrick’s and as a science fan who hopes to become a doctor one day, Micah is grateful to the researchers who strive to find cures: “Those medicines save kids’ lives and one of them saved mine.” This fund honors Micah’s cancer journey and supports neuroblastoma research to find better treatments and cures for kids with this disease.

Lisa Force M.D.

Researcher Photo

Funded: 07-01-2019 through 12-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location: Memphis, TN
Institution: St. Jude Children's Research Hospital

Children and adolescents everywhere in the world get cancer and both the type of cancer, and perhaps more importantly, where they live in the world, factor into whether they live or die. This is due to major disparities between countries in access to optimal treatment, early abandonment of therapy despite the potential for cure, and availability of quality supportive care. Acute lymphoblastic leukemia (ALL), the most common childhood cancer, is mostly curable in countries with strong health systems, like the United States. However, we do not know the exact number of children and adolescents who develop and die from ALL worldwide, because many countries with limited resources also lack quality health registration systems. Identification of context-appropriate strategies to prevent future deaths in children with ALL are necessary, and when combined with improved burden estimates, can guide policy decisions more effectively. Knowing that the majority of countries in the world have limited resources, this project will determine what the best interventions are to improve outcomes for children and adolescents with ALL now, while testing ways to improve estimates of the number of children with ALL who are currently not correctly diagnosed or do not reach healthcare. Awarded at St. Jude Children's Research Hospital and transferred to University of Washington.

E. Alejandro Sweet-Cordero M.D.

Researcher Photo

Funded: 05-01-2019 through 04-30-2023
Funding Type: Research Grant
Institution Location: San Francisco, CA
Institution: University of California, San Francisco affiliated with UCSF Benioff Children's Hospital

Unlike many other pediatric cancers, osteosarcoma has many abnormalities found on genetic analysis of the tumor itself. Dr. Sweet Cordero and colleagues hypothesize that some of these abnormalities could be used to predict what treatment might work best for each specific osteosarcoma patient. For example, many osteosarcomas have genetic alterations that block their ability to "repair" their DNA using specific pathways. One of these defective pathways is called the "homologous repair" pathway and another is called the "alternative lengthening of chromosomes" pathway. The inability of osteosarcoma tumors to repair their DNA using these pathways may make them susceptible to specific drugs. However, it is very likely that these drugs will need to be used in combination and not alone. A key need to advance osteosarcoma patient care is to define and use appropriate model systems to test drugs before using them in patients. This project is combining both preclinical studies in PDX models and a clinical trial to develop new ways to treat osteosarcoma patients with the goal being to improve survival for patients with relapsed and metastatic disease. This multi-year grant is named for and funded by the Battle Osteosarcoma Hero Fund inspired by and established in honor of Charlotte, Dylan, Tyler and all OsteoWarriors. Led by parents, its mission is to raise funds for promising osteosarcoma precision oncology research to improve treatment options and outcomes for kids battling osteosarcoma.

Joseph Ludwig M.D.

Funded: 12-01-2018 through 11-30-2019
Funding Type: Research Grant
Institution Location: Houston, TX
Institution: University of Texas M.D. Anderson Cancer Center

The shape and function of bone, fat, muscle, and other connective tissues evolve through a carefully orchestrated process that leads mesenchymal stem cells (MSCs) to progressively differentiate into more lineage-restricted tissue-specific phenotypes. As this occurs, MSCs must interpret their surrounding extracellular milieu. When everything works correctly, normal mesenchymal tissues emerge. When disrupted, as tragically occurs with Ewing sarcoma (ES), the aberrant fusion protein (FP) acts as powerful transcription-factor that corrupts the epigenetic program and locks ES in an undifferentiated state unable to interpret or respond to the biophysical cues present in the tumor microenvironment. Attempts to understand the FP’s effect upon tumor-ECM interactions within monolayer culture systems that lack a native tumor microenvironment has contributed, not unexpectedly, to spurious results that overestimate the clinical effectiveness of chemotherapy. To close this gap, Dr. Ludwig's multi-disciplinary team is using an innovative 3D tissue engineered model, pioneered by his laboratory, to assess next-generation EWS-FLI1-targeted therapies within a physiological microenvironment that cannot readily be studied in vivo. This project will shed new light on ES biology and promises to improve the ability to co-target the FP and other proteins that maintain the aggressive, poorly differentiated state of ES. This grant is generously supported by the Shohet Family Fund for Ewing Sarcoma Research. Noah was diagnosed with Ewing sarcoma in his freshman year in college. After limb salvage surgery and chemotherapy, he was able to return to school. Two years later, Noah relapsed. This Hero Fund honors his courageous fight and hopes to raise funds for Ewing sarcoma research.

William Tansey Ph.D.

Researcher Photo

Funded: 12-01-2018 through 11-30-2019
Funding Type: Research Grant
Institution Location: Nashville, TN
Institution: Vanderbilt University Medical Center affiliated with Monroe Carell Jr. Children's Hospital at Vanderbilt

Malignant rhabdoid tumor (MRT) and atypical teratoid/rhabdoid tumor (AT/RT) are rare but devastating childhood cancers. Most children diagnosed with MRT and AT/RT are under the age of two, and most will die from their disease despite intensive treatment interventions. New insights into what causes these cancers, and new therapies, are desperately needed. Genetically, MRT and AT/RT are simple cancers, caused by loss of just one gene called SMARCB1. If we are to understand and treat MRT and AT/RT, therefore, we need to understand how loss of SMARCB1 causes cancer. As the recipient of the Oh Danny Boy I Love You So: The Danny O'Brien Rhabdoid Tumor Research Fund St. Baldrick's Research Grant, Dr. Tansey is working on an innovative molecular mechanism through which loss of SMARCB1 causes MRT and AT/RT. He proposes that these mutations drive cancer by stimulating the activity of a known pro-tumorigenic gene called MYC. Dr. Tansey further proposes that MRT and AT/RT can be effectively treated by drugs that block the actions of MYC, currently being developed by us and others. He is testing this model and exploring its therapeutic implications. Completion of this work has the potential to transform the understanding of how MRT and AT/RT form and how they can be treated. Danny O’Brien was five months old when he was diagnosed with a rare malignant rhabdoid tumor on his liver. Despite treatment to shrink the tumor, he passed away at the tender age of 9 months. Fortunately, he knew nothing but love and affection for all of his short life. This fund honors Danny’s courage and remembers his unconditional love in the midst of his battle with cancer.

Alex Huang M.D., Ph.D.

Researcher Photo

Funded: 11-01-2018 through 06-30-2023
Funding Type: Research Grant
Institution Location: Cleveland, OH
Institution: Case Western Reserve University

We can now manipulate the immune system with remarkable precision and efficacy to fight certain cancers. However, tumors adapt to reduce immunotherapy efficacy. This is true for solid tumors including osteosarcoma. Therapy-refractory metastatic osteosarcoma represents a pressing unmet need, as the outcome has not improved for over 3 decades. This multi-institutional collaborative proposal explores tumor-extrinsic pathways by which pulmonary metastatic osteosarcoma evade immunity. Dr. Huang’s team is focusing on key molecules responsible for such evasion, against which existing or emerging therapeutic agents are available currently or in the very near future. Therefore, uncovering these pathways could realistically offer multiple new clinical trials for pediatric and AYA metastatic osteosarcoma in the next 3 years. This Osteosarcoma Collaborative St. Baldrick's Grant to Cure Osteosarcoma is funded through the generosity of the Osteosarcoma Collaborative.

Laura Broutier Ph.D.

Researcher Photo

Funded: 10-01-2018 through 09-30-2022
Funding Type: Robert J. Arceci International Innovation Award
Institution Location: Lyon, France
Institution: Cancer Research Center Lyon

Despite the use of multimodal treatments and the implementation of several clinical trials worldwide, pediatric cancers survival rate has come to a standstill for the last decade. Moreover, intensive therapies are not devoid of long-term side effects, notably increasing lifetime risk for secondary malignancies. The duty of the pediatric oncologist is to propose the most adequate treatment to cure pediatric patients with the best quality of life for a long time. Therefore, understanding the biological underpinnings of pediatric malignancies is crucial to develop new therapeutic paths adapted to the specificities of a young organism. A major pitfall is the lack of adequate experimental models. To overcome this problem, Dr. Broutier is developing patient-derived 3D-organoid models (mini-tumor growing in a dish) of pediatric cancers. Beside their broad interest for research community, she will use them to identify mechanisms involved in cell death resistance in pediatric cancers, as a key step towards development of new targeted therapies adapted to children and adolescents.

Saba Ghassemi Ph.D.

Researcher Photo

Funded: 08-01-2018 through 10-31-2021
Funding Type: St. Baldrick's Scholar
Institution Location: Philadelphia, PA
Institution: University of Pennsylvania affiliated with The Children's Hospital of Philadelphia

Adoptive immunotherapy has demonstrated unprecedented clinical success in the treatment of leukemia. In this therapy, T cells are isolated from a patient, expanded outside of the body, and genetically modified prior to reinfusion. The ability of these T cells to recognize and eliminate cancer cells is improved by expressing a protein (CAR) on the T cell surface. This protein increases "specificity," the ability to recognize cancer cells, and "function," the ability to destroy those cancer cells. An important challenge in cellular immunotherapy is to minimize the manipulation of patients' T cells outside the body. Prolonged culture protocols trigger functional exhaustion and compromises their efficacy upon return to the body. A critical issue involves the pre-requisite "activation" step necessary for CAR expression on the cell surface of T cells. By optimizing culture conditions, Dr. Ghassemi developed approaches to express CAR in dormant T cells without the need for activation. Importantly, her preliminary findings show that elimination of this activation step retains effector function and potency of CAR T cells in models of the pediatric cancer ALL. This project is providing insight into the regulatory components influencing CAR expression in dormant T cells which will lead to superior CAR T cells for cellular immunotherapies against ALL. This grant is supported by TEAM ABBY Gives, a St. Baldrick's Hero Fund. Abby was diagnosed with Pre-B ALL when she was almost five years old. She had a successful bone marrow transplant, but battle battled graft vs. host disease (GVHD) for years. Abby and her treatment team worked hard over many years to keep the GVHD in check. Sadly, Abby passed away on October 19, 2021. This fund unites the incredible support of family and friends in Abby's memory and inspires others to join the fight for cures and better treatments.

Cristina Antonescu M.D.

Researcher Photo

Funded: 07-01-2018 through 06-30-2019
Funding Type: Research Grant
Institution Location: New York, NY
Institution: Memorial Sloan Kettering Cancer Center

Pediatric undifferentiated sarcomas are highly aggressive cancers that typically affect soft tissues of young children. Due to their uncertain classification and lack of molecular signature there are no standard criteria for diagnosis or treatment. With the Alan's Sarcoma Research Fund St. Baldrick's Research Grant, Dr. Antonescu is applying state of the art genomic methods to provide a detailed genetic characterization in these orphan cancers and investigating driving chromosomal translocations or mutations involved in their growth. These results will establish an objective classification of these tumors based on their genetic abnormalities and will provide potential therapeutic targets for further novel therapies. Furthermore these findings will inform the generation of faithful models for studying sarcoma formation and new drug development. This grant is funded by and named for the Alan's Sarcoma Research Fund, a St. Baldrick's Hero Fund. Alan Sanders was diagnosed with a rare sarcoma in his hip at 17 months. He had an indomitable spirit and throughout his 4 ½ year battle with cancer, he was joyful, upbeat and pressed on courageously in spite of surgery and treatments. Today his family and friends carry on his legacy and his rallying cry, “Fight’s on!” in the battle against childhood cancer by funding sarcoma research.

Nmazuo Ozuah M.B.B.S

Researcher Photo

Funded: 07-01-2018 through 06-30-2021
Funding Type: International Scholar
Institution Location: Houston, TX
Institution: Baylor College of Medicine affiliated with Vannie E. Cook Jr. Children's Cancer and Hematology Clinic, Texas Children's Hospital

In the U.S., children with a blood cancer called Hodgkin lymphoma (HL) are usually treated successfully. Some of these children will suffer health problems several years later because of the treatment they received. Because of this, doctors use powerful imaging tools to identify patients who are likely to do well or not. Those who are likely to do well require less treatment and those who are less likely to do well can receive more treatment. But in low-income countries like Malawi, these tools are unavailable, and the children there often receive treatment that may be unnecessary. Scientists have found unique abnormalities in adults with HL that can tell us who is less likely to do well. Here, Dr. Ozuah is testing whether these abnormalities are present in children and could be used to decide how best to treat children with HL in low-middle income countries

Aina He M.D., Ph.D.

Researcher Photo

Funded: 07-01-2018 through 06-30-2021
Funding Type: International Scholar
Institution Location: Boston, MA
Institution: Boston Children's Hospital affiliated with Dana-Farber Cancer Institute, Harvard Medical School

Osteosarcoma is the most common primary bone tumor in childhood. The survival rate remains dismal, mainly due to ineffective therapeutic approaches for the relapsed/metastatic patients. One major obstacle of treating osteosarcoma is lack of suitable preclinical models. Dr. He's studies have established the first cultured osteosarcoma tissue model (an organoid). Dr. He aims to establish the first biobank of osteosarcoma organoids from patients as an open resource for the field, and utilize this organoid biobank to evaluate a novel class of therapeutics targeting key signaling pathways in osteosarcoma cells. This study will provide a powerful platform for predicting clinical treatment responses and developing new therapeutics for treating osteosarcoma.

Ji Zhang Ph.D.

Researcher Photo

Funded: 07-01-2018 through 06-30-2021
Funding Type: St. Baldrick's Scholar
Institution Location: Indianapolis, IN
Institution: Indiana University affiliated with Riley Hospital for Children, IU Health Proton Therapy Center

Cancer cells rely on specific nutrients for growth and survival, rendering nutrient restriction as a potential therapeutic strategy. Along this line, acute lymphoblastic leukemia (ALL) cells have been found to be dependent on exogenous supply of asparagine, a nonessential amino acid, for protein synthesis. As a result, depletion of asparagine in the blood stream by L-asparaginase, a chemo-agent, has been successfully used to treat pediatric ALL for 40 years. However, ALL patients can develop resistance to the continuous application of this chemo-agent. Dr. Zhang is determining how ALL cells become resistant to L-asparaginase treatment, and therefore to provide experimental evidence of novel therapeutic targets that can potentially improve the outcome in pediatric ALL patients.

Asmin Tulpule M.D., Ph.D.

Researcher Photo

Funded: 07-01-2018 through 06-30-2021
Funding Type: St. Baldrick's Scholar
Institution Location: San Francisco, CA
Institution: University of California, San Francisco affiliated with UCSF Benioff Children's Hospital

Sarcomas are tumors of the bone and soft tissues that comprise up to 20% of cancer diagnoses in children. Despite dismal outcomes for patients with recurrent or metastatic disease, treatment regimens have remained largely unchanged for decades – intense non-specific chemotherapy combined with surgery or radiation. Dr. Tulpule studies Ewing’s sarcoma (ES), a bone tumor caused by a unique genetic change that creates a tumor-specific protein EWS-FLI1. To date, no drug has been identified to directly block the cancer causing EWS-FLI1 protein. His research takes a different approach to combating ES by asking a fundamental question: can we identify a targetable weakness in ES tumors that is caused by the EWS-FLI1 protein? Using a cutting-edge screening technology called CRISPR interference, Dr. Tulpule's team identified a specific vulnerability in ES cells’ capacity to repair damage to their DNA. Normal cells have many backup systems in place to repair DNA damage, but they have shown that EWS-FLI1 causes ES cells to become overly reliant on a single pathway, known as homologous recombination (HR) repair, such that blocking HR is an effective and specific way to kill ES. Dr. Tulpule is building a detailed understanding of why ES cells are so vulnerable to HR pathway blockade and then applying that knowledge towards developing less toxic and more effective treatments for ES patients.

Robbie Majzner M.D.

Funded: 07-01-2018 through 06-30-2021
Funding Type: St. Baldrick's Scholar
Institution Location: Palo Alto, CA
Institution: Stanford University affiliated with Lucile Packard Children’s Hospital

Children with high-grade gliomas, such as glioblastoma multiforme, have few therapeutic options and usually die of their disease. CAR T cells recognize protein targets on cancer cells and kill those cells. Many brain tumors express target proteins on only some of their cells and therefore cannot be efficiently treated with a CAR T cell that recognizes only one target. Therefore, Dr. Majzner aims to make T cells that can recognize up to four targets. He is exploring the best way to achieve specificity (the narrowness of the range of substances with which an antibody or other agent acts or is effective) for four antigens including using gene editing in order to make CAR T cells that can come from a healthy donor but be used in any patient. A portion of this grant is funded by and named for the Be Brooks Brave Fund. Despite his diagnosis at age 5 with inoperable brain and spinal tumors, Brooks taught so many people what life is truly about--love. He was BRAVE beyond his years with an inspiring “faith over fear” attitude. This Hero Fund hopes to raise money for high-grade glioma research so no other family will hear the words, “there is no cure”. A portion of this grant was also generously co-supported by the McKenna Claire Foundation, a St. Baldrick's partner and the Living for Luker Brain Tumor Research Fund, a St. Baldrick's Hero Fund. The McKenna Claire Foundation was established by the Wetzel family in memory of their daughter, McKenna. Their mission is to cure pediatric brain cancer by raising awareness, increasing community involvement and funding research. The Living for Luker Brain Tumor Research Fund was established in memory of Luke's love for life and caring for others. He was diagnosed at age 10 with Diffuse Intrinsic Pontine Glioma, a rare, uncurable cancer and never gave up hope throughout treatment.

Michael Leibowitz M.D., Ph.D.

Researcher Photo

Funded: 07-01-2018 through 06-30-2021
Funding Type: St. Baldrick's Scholar
Institution Location: Philadelphia, PA
Institution: The Children's Hospital of Philadelphia affiliated with University of Pennsylvania

There is a new and effective cancer treatment for some incurable pediatric blood cancers. The treatment involves programing a patient's own cells to destroy their tumor, a process called cellular immunotherapy. Despite great effort to use cellular immunotherapy to treat 'solid' tumors, which include tumors of the bones, muscles and other parts of the body, we have not been successful yet. One major reason is that the programmed patient cells are designed to recognize a single marker on a cancer cell. In some blood cancers, all of the tumor cells express the same marker increasing the likelihood that cellular immunotherapy can cure the patient. Solid tumors are more heterogeneous than blood cancers, meaning each solid tumor cell may express a different marker. Therefore, cellular immunotherapy is less likely to destroy all solid tumor cells and the chances of achieving a cure is much more difficult. A potential solution is to trigger the body’s own immune system to destroy tumor cells that express many different markers, a process called "epitope spreading". Named as the David's Warriors St. Baldrick's Scholar, Dr. Leibowitz focuses his project on testing strategies to augment epitope spreading in pediatric solid tumors so that cellular immunotherapy may become an effective and viable treatment option in the future. This grant is named for and generously supported by the David’s Warriors Hero Fund created in memory of David Heard who battled neuroblastoma and inspired his family and countless others to commit to raising money for research to fight pediatric cancer. This fund honors the amazing spirit in which he lived, embracing life until the very end.

Ryan Summers M.D.

Researcher Photo

Funded: 07-01-2018 through 06-30-2021
Funding Type: St. Baldrick's Fellow
Institution Location: Atlanta, GA
Institution: Emory University affiliated with Children's Healthcare of Atlanta, Children's Healthcare of Atlanta at Egleston, Aflac Cancer Center

Based on progress to date, Dr. Summers was awarded a new grant in 2020 to fund an additional year of this Fellow award. Early T-precursor ALL (ETP-ALL) is a type of leukemia that is often difficult to treat with currently available chemotherapy. As a result, children with ETP-ALL have high rates of relapse of their leukemia and poorer survival rates than children with other types of ALL, and require more treatment with chemotherapy, often leading to long-term toxic side effects. For these reasons, new treatments for ETP-ALL are needed. MERTK is a protein that is found on the surface of some leukemia cells, including ETP-ALLs. Recently, Dr. Summers and colleagues developed a new medicine that has few toxic side-effects and can be used to kill leukemia cells that have MERTK on their surface. Funded as the Emily Beazley's Kures for Kids Fund St. Baldrick's Fellow, this grant will allow him to test whether and how this new medicine could be used to more effectively treat children with ETP-ALL, leading to improved outcomes and better quality of life. At the age of 8, Emily was diagnosed with Stage III T-cell lymphoblastic non-Hodgkin’s lymphoma and battled through three relapses. Her family prayed for a miracle but discovered Emily herself was the miracle, inspiring a community to come together to show love and change lives. She had a dream of starting a foundation to fund research and named it “Kures for Kids”. Today, Emily's family and friends carry on her dream and her mission in her memory.