Grants Search Results

Need help? Call us at (888) 899-2253

Interested in applying for a St. Baldrick's Foundation grant? Learn more about the grant application process.

Showing 81-100 of 767 results

Eman Elsabbagh M.D., MSc

Researcher Photo

Funded: 07-01-2022 through 06-30-2023
Funding Type: International Scholar
Institution Location: Mansoura, Egypt
Institution: Mansoura Children's Hospital

Cancer research allows scientists to modify specific immune cells to recognize and kill cancer. One type of immune cell is called the cytotoxic killer T cell. This T cell has a receptor (TCR) that is used to recognize a structure on the cancer cell's surface called a peptide-major histocompatibility molecules complex I (pMHC I). pMHC I complexes are diverse and are rarely shared amongst patients. This diversity prevents the use of a classic TCR across multiple patients to avoid tissue injury that known as graft versus host disease (GVHD). To bypass these limitations, Dr. Elsabbagh propose to develop T cells expressing a TCR that can target a protein called CD1d. Unlike MHC I, CD1d is not diverse and is well expressed on various childhood cancers including acute myeloid leukemia (AML), which has been known for high rates of treatment-related toxicity and disease recurrence. These modified cells will be pre-made and used universally in any AML or other children’s cancers that expresses CD1d. Dr. Elsabbagh and team will also attach a recent discovered enhancing protein called MyD88 to the created receptor to enhance their anticancer activity. They expect these modified T cells will be able to recognize and kill children AML cells.

Jehad Almaliti Ph.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2025
Funding Type: International Scholar
Institution Location: Amman, Jordan
Institution: The University of Jordan

There is no nice way to tell someone they've got a brain tumor, and with a child it’s unimaginable. In fact, brain tumors are the leading cause of solid tumor cancer death in children. Proteasome inhibitors are a recently discovered drug class that is effective in many types of cancer and have reduced side effects to normal cells. Dr. Almaliti aims to develop novel potent and selective proteasome inhibitors that will specifically kill brain cancer in children. This innovative approach should result in the discovery of new clinical leads for treating brain cancers in children. This grant is funded by and named for Luke's Army Pediatric Cancer Research Fund. This Hero Fund was created in memory of Luke Ungerer who brought smiles and sunshine wherever he went with plenty to share with everyone. He battled a brain tumor with a positive spirit and inspired others with his courage in his short life. This fund intends to carry on Luke’s legacy of positivity with the hope that it will ripple across many lives for many years to come.

Rosa Nguyen M.D., Ph.D.

Funded: 07-01-2022 through 06-30-2024
Funding Type: St. Baldrick's Scholar
Institution Location: Bethesda, MD
Institution: National Cancer Institute, National Institutes of Health affiliated with NIH Clinical Center

Dr. Nguyen uses the patient's own immune T cells and armors them in the laboratory with a chimeric antigen receptor (CAR) to recognize neuroblastoma cells and kill them. Although she has demonstrated a robust anti-tumor effect of CAR T cells in models of neuroblastoma, she noticed that they can be overwhelmed by too many tumor cells and work less effectively. However, the CAR T cell function was restored when the cells were engineered to express tethered IL15 and -21 on their surface. Though these cytokines activated the CAR T cells and improved their function, models also showed signs of toxicity, which she hypothesizes to be caused by cytokine-driven CAR T cells. Therefore, this project will describe the manifestation and understand the cause of CAR T cell-associated toxicities in our neuroblastoma model. Furthermore, Dr. Nguyen and colleagues propose to reduce the side effects by engineering tethered cytokines that are predominantly expressed in the vicinity of tumor cells (conditional expression). The completion of this project will forge a new direction for the use of cytokines in CAR T cell therapy and render a new fourth-generation CAR T cell therapy safer for translation into the clinic. This honor award is without funding.

Eman Elsabbagh M.D., MSc

Researcher Photo

Funded: 07-01-2022 through 06-30-2023
Funding Type: International Scholar
Institution Location: Denver, CO
Institution: University of Colorado affiliated with Children's Hospital Colorado

Cancer research allows scientists to modify specific immune cells to recognize and kill cancer. One type of immune cell is called the cytotoxic killer T cell. This T cell has a receptor (TCR) that is used to recognize a structure on the cancer cell's surface called a peptide-major histocompatibility molecules complex I (pMHC I). pMHC I complexes are diverse and are rarely shared amongst patients. This diversity prevents the use of a classic TCR across multiple patients to avoid tissue injury that known as graft versus host disease (GVHD). To bypass these limitations, Dr. Elsabbagh propose to develop T cells expressing a TCR that can target a protein called CD1d. Unlike MHC I, CD1d is not diverse and is well expressed on various childhood cancers including acute myeloid leukemia (AML), which has been known for high rates of treatment-related toxicity and disease recurrence. These modified cells will be pre-made and used universally in any AML or other children’s cancers that expresses CD1d. Dr. Elsabbagh and team will also attach a recent discovered enhancing protein called MyD88 to the created receptor to enhance their anticancer activity. They expect these modified T cells will be able to recognize and kill children AML cells.

Jehad Almaliti Ph.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2025
Funding Type: International Scholar
Institution Location: San Diego, CA
Institution: University of California, San Diego affiliated with Rady Children's Hospital San Diego

There is no nice way to tell someone they've got a brain tumor, and with a child it’s unimaginable. In fact, brain tumors are the leading cause of solid tumor cancer death in children. Proteasome inhibitors are a recently discovered drug class that is effective in many types of cancer and have reduced side effects to normal cells. Dr. Almaliti aims to develop novel potent and selective proteasome inhibitors that will specifically kill brain cancer in children. This innovative approach should result in the discovery of new clinical leads for treating brain cancers in children. This grant is funded by and named for Luke's Army Pediatric Cancer Research Fund. This Hero Fund was created in memory of Luke Ungerer who brought smiles and sunshine wherever he went with plenty to share with everyone. He battled a brain tumor with a positive spirit and inspired others with his courage in his short life. This fund intends to carry on Luke’s legacy of positivity with the hope that it will ripple across many lives for many years to come.

Marc Schwartz M.D., Ph.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2024
Funding Type: St. Baldrick's Fellow
Institution Location: Boston, MA
Institution: Dana-Farber Cancer Institute affiliated with Boston Children's Hospital, Harvard Medical School

One of the most exciting recent developments in cancer treatment is the growing ability to use the body’s own immune system to directly fight tumors. However, these treatments still do not work on most patients, and we think it is critical to understand how each cancer type avoids the immune system. Dr. Schwartz is investigating how neuroblastoma, one of the most common pediatric solid tumors, escapes destruction by the immune system. To accomplish these goals, he will use cutting-edge technologies to dissect the immune biology in a model of neuroblastoma, with a particular focus on studying an important type of cancer-killing cell called a 'CD8 T cell'. Dr. Schwartz thinks him and his colleagues have identified an important new way that neuroblastoma evades these T cells. Their preliminary results suggest that neuroblastoma directly causes T cell death, limiting the ability of T cells to survive and kill enough tumor cells. He is trying to learn how neuroblastoma causes the death of T cells and find ways to block this immune evasion strategy. Most importantly, he predicts that combination treatment designed to block neuroblastoma's ability to kill T cells along with existing immune therapies will drastically improve the ability of the immune system to eradicate neuroblastoma. A portion of this grant is funded by and named for the Oliver Wells Fund for Neuroblastoma, a St. Baldrick's Hero Fund. From the moment he was born, Ollie was the center of the Wells family with a contagious smile and a sparkle in his eyes. As the youngest child, it was devastating when they learned the 15 year old toddler had cancer. Oliver was diagnosed with high risk neuroblastoma and spent the next 13 months bravely enduring chemotherapy and radiation, more than a dozen surgeries and a bone marrow transplant. But Ollie persevered and smiled through it all. It was an unfair fight from the beginning and in July 2018, Ollie passed away. The Oliver Wells Fund for Neuroblastoma was established in his memory to raise funds to find cures and give hope to other kids facing the same fight. In this way, the Wells family intends to share Oliver’s joy for life and use his story to help find a cure.

John Prensner M.D., Ph.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2024
Funding Type: St. Baldrick's Scholar
Institution Location: Boston, MA
Institution: Dana-Farber Cancer Institute affiliated with Boston Children's Hospital, Harvard Medical School

High-risk medulloblastoma is a devastating childhood brain cancer that results in death in nearly 50% of patients. To improve future treatments for this disease, Dr. Prensner is studying a category of newly-discovered "dark proteins", which have been excluded from prior work due to their small size and unconventional locations in the human genome. He has found that a group of these dark proteins are critical for medulloblastoma cells to survive. This research will reveal how these dark proteins may point toward new approaches to treat medulloblastoma, which may be critical to define the next generation of anti-cancer therapies in this disease. This grant was awarded at Dana Farber Cancer Institute and transferred to the University of Michigan.

Margot Lazow M.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2025
Funding Type: St. Baldrick's Scholar
Institution Location: Columbus, OH
Institution: The Research Institute at Nationwide affiliated with Nationwide Children's Hospital

Brain and spine tumors are the leading cause of cancer-related death in children and adolescents. While cure can sometimes be achieved with conventional chemotherapy, surgery, and/or radiation, prognosis is dismal for patients whose aggressive brain/spine tumors progress despite these treatments. There is a critical need to develop new effective, well-tolerated therapies for children, adolescents, and young adults with refractory high-grade brain/spine tumors. Lutathera is a targeted radiotherapy which binds to tumor cells that express somatostatin receptors, causing tumor cell death through localized release of radiation, with minimal side effects. Many pediatric and young adult high-grade brain/spine tumors express somatostatin receptors, making them ideal targets for this therapy. Dr. Lazow is conducting a clinical trial to assess the safety and effectiveness of Lutathera in children and young adults with recurrent high-grade brain/spine tumors. Within this trial, she will also 1) evaluate how somatostatin receptor expression varies across different brain/spine tumors and determine clinical, imaging, pathology, and genetic characteristics which correlate with that expression, 2) identify imaging and molecular biomarkers predictive of response to Lutathera and/or disease recurrence, and 3) perform radiation dosimetry to establish optimal dosing of Lutathera in children and young adults, ensuring adequate tumor penetration while minimizing toxicity. If Lutathera proves safe and effective in treating children and young adults with refractory brain tumors, further studies will be planned to expand to a larger patient population and eventually incorporate Lutathera into upfront treatment backbones for these aggressive diseases. This grant is funded by and named for the Miracles for Michael Fund, a St. Baldrick's Hero Fund created in memory of Michael Orbany who was diagnosed with medulloblastoma when he was 6 years old. After completing initial treatment, his cancer relapsed within a year and he passed away at the age of nine. Michael had unwavering faith and perseverance, wanting most of all to make others happy. This fund honors his tremendous strength to never ever give up.

Kelly Faulk M.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2025
Funding Type: St. Baldrick's Scholar
Institution Location: Denver, CO
Institution: University of Colorado affiliated with Children's Hospital Colorado

Based on progress to date, Dr. Faulk was awarded a new grant in 2024 to fund an additional year of this Scholar grant. Infant leukemia is an aggressive cancer with a very poor prognosis. The leukemia cells in most of these patients have a genetic change in which a gene (KMT2A) is broken and combined with other genes that typically do not interact with one another (this is called "rearranged"). A drug named SNDX-5613 has been developed that directly targets the changes that occur in a cell with a KMT2A rearrangement to specifically kill these leukemia cells, and it has shown promise in treating adult leukemia patients with a KMT2A rearrangement. An upcoming clinical trial will combine SNDX-5613 with traditional chemotherapy for children with leukemia with a KMT2A rearrangement that has come back (relapsed) or proven resistant to typical treatment (refractory). In addition to testing the safety and efficacy of SNDX-5613, studies will be done on patients’ blood and bone marrow samples to better understand how the drug functions in fighting leukemia. This trial represents the next step in evaluating this promising new targeted drug for these deserving patients, and the associated studies are key to helping us understand more about the biology of this leukemia and how to best target it. This grant is named for the Oh Danny Boy, I Love You So: The Danny O'Brien Rhabdoid Tumor Research Fund. Danny O’Brien was just 5 months old when he was diagnosed with a malignant rhabdoid tumor on his liver. This cancer is extremely rare and aggressive. He endured chemotherapy to shrink the tumor for surgery, but the treatment was not effective. At the tender age of 9 months, Danny passed away. Fortunately, he knew nothing but love and affection all of his short life. This fund honors Danny’s courage and his unconditional love even in the midst of his battle with cancer.

Betsy Young M.D.

Researcher Photo

Funded: 07-01-2022 through 06-30-2025
Funding Type: St. Baldrick's Fellow
Institution Location: San Francisco, CA
Institution: University of California, San Francisco affiliated with UCSF Benioff Children's Hospital

Based on the progress to date, Dr. Young was awarded a new grant in 2024 to fund an additional year of this Fellow grant. Osteosarcoma is a bone tumor that usually occurs in children and young adults and can be deadly especially when the tumor spreads to other body parts. The treatment strategy for this disease has not seen significant improvement in over 30 years, and there is no specific treatment for tumors that have spread throughout the body. In this project, the major goal is to identify factors that control the spread of osteosarcoma in order to develop new therapies to extend the lives of patients. Currently, Dr. Young is investigating whether osteosarcoma cells block the activation of one part of the patient's immune system, protecting the cancer cells from an immune attack and allowing them to spread throughout the body. This work has the potential to uncover new treatments to harness the immune system to fight this devastating disease. This grant is named for the Team Jackson Hero Fund. The fund was established in honor Jackson Schmitt who died six days after his diagnosis with osteosarcoma from a stroke. Jackson’s story was told worldwide and his legacy lives on through funding life-saving osteosarcoma research.

Ruyan Rahnama M.D.

Researcher Photo

Funded: 07-01-2022 through 08-31-2025
Funding Type: St. Baldrick's Fellow
Institution Location: San Francisco, CA
Institution: University of California, San Francisco affiliated with UCSF Benioff Children's Hospital

Based on the progress to date, Dr. Rahnama was awarded a new grant in 2024 to fund an additional year of this Fellow grant. Acute Myeloid Leukemia (AML) is a blood cancer that affects children. While there have been important advances in treatment and care of pediatric patients with AML, 20-40% relapse and have poor outcomes. Novel therapies are urgently needed to combat this disease. One treatment modality under investigation involves manipulation of the body's immune system by reprogramming immune cells with inherent anti-leukemia properties to specifically target AML cancer cells. Dr. Rahnama is focused on the study of natural killer (NK) cells as immune cells of interest. NK cells can be engineered to express Chimeric Antigen Receptors (CARs) that recognize specific proteins on leukemia cells in order to attack and kill them. The site where the CAR-modified NK cell and the target leukemia cell come together is known as the immunological synapse (IS). The IS is highly organized and plays a key role in activating the NK cell. Dr. Rahnama aims to better understand the interaction between CAR-modified NK cells and target leukemia cells by studying the biology of the IS as related to how tightly the two cells interact. Her goal is to improve CAR-NK cell design for ultimate use as pediatric AML treatment. This grant was awarded at Johns Hopkins University School of Medicine and transferred to the University of California, San Francisco. This grant is funded by and named for the Aiden's Army Fund. When he was 8 years old, Aiden Binkley was diagnosed with Stage IV rhabdomyosarcoma. He had a huge tumor in his pelvis and the cancer had metastasized to his lungs. But this bright, funny and courageous boy believed he got cancer so he could grow up to find a cure for it. Aiden’s story has inspired so many people and his vision to cure cancer is being carried on by Aiden’s Army through the funding of research. They will march until there is a cure!

Babak Moghimi M.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2025
Funding Type: St. Baldrick's Scholar
Institution Location: Los Angeles, CA
Institution: Children's Hospital Los Angeles

Based on progress to date, Dr. Moghimi was awarded a new grant in 2023 and 2024 to fund an additional year of this Scholar grant. In recent years, a very successful immunotherapy strategy to modify a patient's immune cells (called T-cells) to attack cancer has been developed for children with leukemia (cancer of blood cells). These modified immune cells are called Chimeric Antigen Receptor T cells (CAR-T cells). These CAR-T cells are very potent and do a better job than any chemotherapy at killing cancer. However, this life-saving tool has been available only to a small group of patients and for a handful of cancers. This is because most cancers don't have the targets those CAR-T cells aim for, or they have a target that can also be found on normal organs. As a result, these CAR-T cells could harm normal organs as collateral damage, a significant adverse effect of treatment that clinicians would want to avoid. In this proposal, Dr. Moghimi is striving to build the next generation of CAR-T cells that solely react to a combination of targets. These cells recognize a tumor only if they have both targets in sight and will not otherwise attack normal organs. CAR-T cells that operate based on a combination of two targets are more accurate than other targeting cells. Using this new generation of CAR-T cells, researchers would be able to significantly expand the availability of this powerful treatment to many more patients. Dr. Moghimi and colleagues will develop these special CAR-T cells for patients with Acute Myeloid Leukemia (AML), another common form of leukemia with a higher mortality rate for children. These results will provide pre-clinical evidence that could quickly translate to new clinical trials for children with relapsed AML through the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) consortium, an international collaboration headquartered at CHLA.

Matthew Kudek M.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2023
Funding Type: St. Baldrick's Fellow
Institution Location: Milwaukee, WI
Institution: Children's Hospital of Wisconsin affiliated with Medical College of Wisconsin, Midwest Children's Cancer Center

Neuroblastoma is one of the most common pediatric tumors, responsible for 12% of all cancer deaths in children under 15 years old. Only about 50% of patients with widespread neuroblastoma will live for ten years after diagnosis. A recent breakthrough in cancer treatments known as CAR T cell therapy reprograms a patient’s own immune cells to recognize tumor cells. While CAR T cell monotherapy works for some cancer types, several research studies using CAR T cells to treat neuroblastoma have been relatively unsuccessful. This is likely due to immune suppression caused by the tumor itself. Interestingly, it is known that if a person with cancer develops an infection, the infection can stimulate an immune response that will promote cancer remission. With this knowledge, Dr. Kudek and colleagues have pioneered an innovative technique to boost CAR T cell therapy response. They have shown that the cancer-destroying function of reprogrammed immune cells is boosted when a weakened infection is introduced into a tumor and found that this treatment combination in bladder cancer led to cure in most of the disease models. Encouraged by these findings, he is pursuing proof-of-principle studies to determine how this treatment approach can be best applied to neuroblastoma treatment. This grant is named for the LukeStrong a Force Against Neuroblastoma Childhood Cancer Fund. When Luke was 5 years old, he was diagnosed with high-risk neuroblastoma. He is now in his teens and still in active treatment for relapsed neuroblastoma. Since 2014 Luke’s “Never tell me the odds” attitude has inspired his family and friends to shave their heads, fundraise with St. Baldrick’s, and help conquer childhood cancers.

Lisa Niswander M.D., Ph.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2024
Funding Type: St. Baldrick's Fellow
Institution Location: Philadelphia, PA
Institution: The Children's Hospital of Philadelphia affiliated with University of Pennsylvania

Children with some kinds of blood cancers (leukemias) are not cured by regular chemotherapy and are at high risk of dying without better treatment options. Dr. Niswander is working to create new treatments that are more personalized for each child’s leukemia cells. The first treatment targets ‘miswired’ communication networks inside the leukemia cells that make them cancerous, and the second treatment uses the body’s own immune system to attack the leukemia cells. Each of these treatments is able to kill a patient’s cancer cells. But, eventually the leukemia cells develop changes that allow them to begin growing again despite the therapy, and the cancer comes back. These two therapies have never been combined together in patients. In this project, Dr. Niswander and colleagues are studying the best ways to combine these new treatments for two kinds of high-risk pediatric leukemias, since often two treatments that work in different ways are better than one. She is hopeful that by using patients’ own leukemia cells they will identify the best personalized treatments for future testing in pediatric patients to improve their chances of cure and living long and healthy lives. For 2022, this grant is named for the Invictus Fund, a St. Baldrick’s Hero Fund created in memory of Holden Gilkinson. It honors Holden's unconquerable spirit in his battle with bilateral Wilms tumor by funding cures and treatments to mitigate side and late effects of childhood cancer. In 2021, this grant was generously supported by Super Soph's Pediatric Cancer Research Fund, a St. Baldrick's Hero Fund. Sophie Rossi was diagnosed with AML at 3 months of age. Throughout her courageous battle, she was always smiling, always joyful. This fund was created to honor her spunky, sweet spirit by funding research to find cures for AML and all childhood cancers.

Jessica Tsai M.D., Ph.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2023
Funding Type: St. Baldrick's Fellow
Institution Location: Boston, MA
Institution: Dana-Farber Cancer Institute affiliated with Boston Children's Hospital, Harvard Medical School

Diffuse intrinsic pontine glioma (DIPG) is a deadly pediatric brain cancer. Tragically, the majority of children diagnosed with the disease die within 12 months because the most effective treatment, radiation, is palliative at best. Therefore, there is a significant need to develop new therapeutic strategies to improve the terrible outcomes for these patients. Looking at genes that are turned on or off in a cancer can be helpful to figure out what is causing cancer growth. DIPGs are known to have mutations in a group of genes called histones that intriguingly regulate whether other genes in the cell are turned on or off. While looking at genes that are turned on or turned off in DIPG, Dr. Tsai found a gene called FOXR2 that is turned on in a subset of these tumors. FOXR is not usually present in the normal brain, but it has high levels in a subset of DIPGs. This is exciting because if researchers can target FOXR2 with new therapies, only tumor cells would be affected, sparing the normal cells in the brain. The goal of this project is to figure out exactly how FOXR2 makes DIPGs grow and to identify strategies that can be used in new treatments to target FOXR2. A portion of this grant is generously supported by Griffin's Guardians, a St. Baldrick's partner. Griffin's Guardians was created by the Engles in memory of their son, Griffin. Their mission is to provide support and financial assistance to children battling cancer in Central New York, raise awareness about pediatric cancer and provide funding for research.

LaQuita Jones D.O.

Researcher Photo

Funded: 07-01-2021 through 06-30-2024
Funding Type: St. Baldrick's Scholar
Institution Location: Cincinnati, OH
Institution: Cincinnati Children's Hospital Medical Center affiliated with University of Cincinnati College of Medicine

Based on progress to date, Dr. Jones was awarded a new grant in 2023 to fund an additional year of this Scholar grant. Acute myeloid leukemia (AML) is a difficult to treat cancer that is associated with death in nearly 4 out of 10 children who are diagnosed with this disease. We know that there are multiple factors that contribute to poor outcomes in these patients, however, researchers don't fully understand all of them. Dr. Jones will gain a greater understanding of the resistance associated with a specific type of AML that is particularly difficult to treat. She hopes to gain clarity about this type of disease to find more specific therapies to target those resistance mechanisms in the cancer cells.

Cheng-Chia Wu M.D., Ph.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2025
Funding Type: St. Baldrick's Scholar
Institution Location: New York, NY
Institution: Columbia University Medical Center affiliated with Morgan Stanley Children’s Hospital, New York-Presbyterian

Based on progress to date, Dr. Wu was awarded a new grant in 2023 and 2024 to fund an additional year of this Scholar grant. Diffuse midline glioma (DMG) is a fatal brain cancer in children and there are no effective treatments. The brain's natural barrier prevents drugs from reaching the tumor. Focused ultrasound (FUS) uses sound waves to temporarily open the blood brain barrier to increase drug delivery to the protected tumor cells in the brain. As the Hannah's Heroes St. Baldrick's Scholar, Dr. Wu will be using panobinostat, a promising drug tested in cancer cells in the laboratory to examine if FUS can increase its delivery and whether the addition of radiation can further improve the outcomes. The 2023 year of this grant is co-funded by the Focused Ultrasound Foundation. The 2021 and 2022 years of this grant are funded by and named for Hannah’s Heroes, a St. Baldrick's Hero Fund established to honor Hannah Meeson. At age six she was diagnosed with anaplastic medulloblastoma. After a relapse and several additional months of treatment, Hannah currently shows no evidence of disease. Throughout her treatments, Hannah never complained and remained positive and happy. This fund pays tribute to her fight by raising awareness and funding for all childhood cancers because kids like Hannah “are worth fighting for.”

Fredrick Lutwama Ph.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2023
Funding Type: International Scholar
Institution Location: Kampala, Uganda
Institution: Uganda Cancer Institute

In Africa, the majority of children who get cancer die from their disease. This happens in many cases because the patients do not get a correct diagnosis. Without a precise and correct diagnosis, these children cannot benefit from the newest curative treatments. To help prevent this from happening, Dr. Lutwama will develop and test a strategy to diagnose pediatric cancer correctly in a manner that is affordable, reliable, and within a shorter time frame in resource-limited settings.

Fredrick Lutwama Ph.D.

Researcher Photo

Funded: 07-01-2021 through 06-30-2023
Funding Type: International Scholar
Institution Location: Houston, TX
Institution: Baylor College of Medicine affiliated with Vannie E. Cook Jr. Children's Cancer and Hematology Clinic, Texas Children's Hospital

In Africa, the majority of children who get cancer die from their disease. This happens in many cases because the patients do not get a correct diagnosis. Without a precise and correct diagnosis, these children cannot benefit from the newest curative treatments. To help prevent this from happening, Dr. Lutwama will develop and test a strategy to diagnose pediatric cancer correctly in a manner that is affordable, reliable, and within a shorter time frame in resource-limited settings.

Anirban Das D.M., M.D.

Funded: 07-01-2020 through 12-31-2023
Funding Type: International Scholar
Institution Location: Toronto, ON
Institution: Hospital for Sick Children

Based on progress to date, Dr. Das was awarded a new grant in 2022 to fund an additional year of this International Scholar grant. When a cell divides, the DNA duplicates. However there may be errors in this process. Most are corrected by an in-built replication repair mechanism. If not corrected, this may lead to mutations. The repair mechanism itself may be faulty in some children with an inherited condition. They develop cancers in the brain, intestines and blood, with very high number of mutations. These cancers are difficult to diagnose and do not respond to standard chemotherapy and radiation. Dr. Das and colleagues have developed cutting edge yet inexpensive genomic tool, called 'signatures' which will help better diagnose this disease. The tool will also predict which children will benefit from a new, promising treatment known as immunotherapy. It will also help diagnose other family members before they develop cancers and initiate surveillance to improve their chances for survival. The condition is more prevalent in the developing world where the custom of marrying within one's community is prevalent. Hence validation of the utility of this tool and developing local capacity to use this will benefit large number of children and their families in underserved areas across the globe. The 2022 portion of this grant is funded by and named for the Kai Slockers Pediatric Cancer Research Fund. Kai was diagnosed at 2½ with Atypical Teratoid Rhabdoid Tumor (ATRT), a rare and very aggressive brain cancer. Within two weeks of diagnosis, he passed away, a mere 3 months shy of his third birthday. When Kai took his last breath, the cloudy sky opened up with a bright ray of sun that streamed through the windows of his hospital room – the darkness of the disease was replaced with the light of hope and the peace of no more suffering. Whenever the sun is out, his family thinks of him, assured that his legacy of hope shines on. In his brief life, Kai shared his warmth, energy, goofy sense of humor, and caring heart with all those he met. This Hero Fund was created in his memory and will support research to help other kids with cancer have a better chance to fight and survive. It has a special focus on brain tumor research, specifically treatments that could minimize the harsh effects of brain tumor treatment. The Slockers family hopes to continue his legacy of light and hope through the funding of childhood cancer research. A portion of this grant is generously supported by The Team Campbell Foundation. The Foundation was established in memory of Campbell Hoyt, who courageously battled anaplastic ependymoma, a rare cancer of the brain and spine, for five years before passing away in August of 2014 at the age of eight. Its mission is to improve the lives of families facing a childhood cancer diagnosis through raising awareness, funding research and providing psycho-social enrichment opportunities.